skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Townsend, Lee"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Recurrent novae undergo thermonuclear-powered eruptions separated by less than 100 yr, enabled by subgiant or red giant donors transferring hydrogen-rich matter at very high rates onto their massive white dwarf companions. The most rapidly moving parts of envelopes ejected in successive recurrent nova events are predicted to overtake and collide with the slowest ejecta of the previous eruption, leading to the buildup of vast (∼10–100 pc) superremnants surrounding all recurrent novae, but only three examples are currently known. We report deep narrowband imaging and spectroscopy, which have revealed a ∼70 pc diameter shell surrounding the frequently recurring nova RS Ophiuchi. We estimate the superremnant mass to be ∼20–200M, expanding at a few tens of km/s, with an age of order 50–100 kyr. Its extremely low surface brightness and large angular size help explain the hitherto surprising absence of nova superremnants. Our results support the prediction that all recurrent novae are surrounded by similar extended structures. 
    more » « less
    Free, publicly-accessible full text available June 26, 2026
  2. ABSTRACT Just 10 recurrent novae (RNe) – which erupt repeatedly on time-scales shorter than one century – are known in our Galaxy. The most extreme RN known (located in the Andromeda galaxy), M31N 2008-12a, undergoes a nova eruption every year, and is surrounded by a vast nova ‘super-remnant’, 134 pc in extent. Simulations predict that all RNe should be surrounded by similar vast shells, but previous searches have failed to detect them. KT Eri has recently been suggested to be a RN, and we have used the Condor Array Telescope to image its environs through multiple narrow-band filters. We report the existence of a large (∼50-pc diameter), H $$\, \alpha$$-bright shell centred on KT Eri, exactly as predicted. This strongly supports the claim that KT Eri is the 11th Galactic recurrent nova, and only the second nova known to be surrounded by a super-remnant. SALT spectra of the super-remnant demonstrate that its velocity width is consistent with that of M31-2008-12a. 
    more » « less